Masala #R062G
Funksiyadan masala
Nurmuhammad matematikani yaxshi bilgani bois Abubakrga funksiyadan savol berdi.
\(f:\mathbb{R} \setminus \{0,1\} \longrightarrow \mathbb{R}\)
\(f(x) + f\left(\frac{1}{1-x}\right) = \frac{2(1-2x)}{x(1-x)}\)
Abubakrning vazifasi Nurmuhammad bergan funksional tenglikni yechib \(f(n)\) ning qiymatini topish. Siz unga yordam bering.
Birinchi qatorda \(-10^9 \leq n \leq 10^9\) haqiqiy soni beriladi.
Bitta qatorda \(f(n)\) ning qiymatini \(10^{-5}\) aniqlikda chop eting. \(f(n)\) ning javobi bo'lmasa "Error" yozuvini chiqing.
| # | input.txt | output.txt |
|---|---|---|
| 1 |
1 |
Error |
| 2 |
2 |
3.00000 |